Data Input and Output is an essential aspect of working with pandas. The
library provides several functions and methods to read and write data to and
from different file formats. In this article, we will discuss how to read and
write data to and from CSV, Excel, JSON, and SQL file formats using pandas.
CSV
Comma Separated Values (CSV) is one of the most widely used file formats for
storing data. pandas provides the read_csv
and to_csv
functions to read
and write CSV files, respectively.
To read a CSV file, use the read_csv()
function and pass the file path as an argument. The function returns a
DataFrame object.
import pandas
as pd
df = pd.read_csv(
'data.csv')
The read_csv()
function
also accepts several optional parameters to customize the reading process. For
example, you can use the header
parameter to specify the row number to use as the column names, or use the names
parameter to provide a list of
column names.
To write a DataFrame to a CSV file, use the to_csv()
function and pass the file path as an argument.
df.to_csv(
'data_modified.csv', index=
False)
The to_csv()
function
also accepts several optional parameters to customize the writing process. For
example, you can use the sep
parameter to specify the separator character to use between fields, or use the index
parameter to specify whether to
write the row index to the file.
Excel
Excel is another widely used file format for storing data. pandas provides
the read_excel
and to_excel
functions to read and write
Excel files, respectively.
To read an Excel file, use the read_excel()
function and pass the file path as an argument. The function returns a
DataFrame object.
df = pd.read_excel(
'data.xlsx')
The read_excel()
function
also accepts several optional parameters to customize the reading process. For
example, you can use the sheet_name
parameter to specify the sheet to read from the Excel file, or use the usecols
parameter to specify the columns
to read.
To write a DataFrame to an Excel file, use the to_excel()
function and pass the file path as an
argument.
df.to_excel(
'data_modified.xlsx', index=
False)
The to_excel()
function
also accepts several optional parameters to customize the writing process. For
example, you can use the engine
parameter to specify the engine to use when writing to the file, or use the columns
parameter to specify the columns
to write.
JSON
JavaScript Object Notation (JSON) is a lightweight data interchange format.
pandas provides the read_json
and to_json
functions to
read and write JSON files, respectively.
To read a JSON file, use the read_json()
function and pass the file path as an argument. The function returns a
DataFrame object.
df = pd.read_json(
'data.json')
No comments:
Post a Comment